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ON THE ROAD TO COMPUTATIONAL ACOUSTICS 

H. Dwight Hogge, Research Scientist 

Poseidon Research, Los Angeles, California 

Abstract 

Acousticians have largely overlooked the methods of computational 

fluid dynamics  (i.e., the direct numerical integration of the nonsteady, 

compressible continuity, momentum, and energy equations) because of the 

success of the linearized normal-mode approach and because the numerical 

viscosity inherent in traditional computational methods damps out acoustic 

disturbances at an unrealistic rate. The advantage of the computational 

approach is that it allows inclusion of physical phenomena excluded from 

the linearized normal-mode approach such as nonlinear convection, non- 

isentropic losses, and phase change effects. The recent development of 

SHASTA, a relatively nondiffusive computational method [J. P. Boris 

and D. L. Book, J. Comp. Physics 11, 38-69 (1973)], has made possible 

the accurate solutions to acoustics problems.  SHASTA is applied to a 

piston driven shock wave, an acoustic traveling wave, and an acoustic 

standing wave. The solutions of these problems by other standard 

numerical schemes are shown for comparison.  It is found that only 

SHASTA is acceptable for all problems considered. As a practical example 

the computational approach is applied to the acoustic-wave/entropy-wave 

interaction associated with reflections from a choked flow wall. 



1. Introduction 

For centuries the science of acoustics has prospered on the tremen- 

dous successes achieved by the use of linear theory. An incredible number 

of physical phenomena can be quite adequately analysed and modeled by 

the use of such techniques as normal mode expansions and Green's functions. 

In fact, this method of analysis has become a major component of the field 

of classical mathematical physics.  The small (but not unimportant) por- 

tions of the field of acoustics that cannot be adequately modeled by 

linear theory have been by far overshadowed by the successes of linear 

theory. 

In recent decades, workers in the field of nonsteady gas-dynamics 

have developed methods of solving nonlinear problems by purely computa- 

tional techniques. The thrust of the effort has been aimed at the 

difficult problem of numerical solutions to hyperbolic partial differen- 

tial equations with discontinuous solutions—in other words, the 

mathematical theory of shock waves. The result has been a sophisticated 

technology finely tuned to give the best possible representation of 

shock waves. The most successful of such theories are those of Von 

Neumann and Richtmyer (1950), which is a Lagrangian approach, and Lax 

and Wendroff (1960), which is an Eulerian approach. These theories 

represent the state of the art as of twenty and ten years ago, respec- 

tively. 

Although the classical computational methods of Von Neumann- 

Richtmyer and Lax-Wendroff were developed explicitly for the solution 

of shock wave problems, it is possible to apply them to linear acoustics 

problems.  As will be shown in this paper, the solution to linear prob- 

lems using these methods can be satisfactory under certain circumstances. 

On many occasions, however, it is necessary to supplement the numerical 

diffusion of the classical methods with a linear artificial viscosity 
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in order to stabilize the solution.  On those occasions, the linear 

damping makes solution to linear acoustics problems impossible. The 

classical methods represent an essentially nonresolvable conflict between 

stability and nondiffusiveness. 

More recently a new method called SHASTA was developed by Boris and 

Book (1973).  This method has the particular advantage that it provides 

the numerical stability required to solve shock wave problems yet retains 

the degree of nondiffusivity required to solve linear problems. The 

main objective of this paper is to demonstrate the problems associated 

with the classical methods and to show that SHASTA overcomes these 

problems. 
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2.  The Governing Equations 

Computational acoustics, like its parent computational fluid 

dynamics, is simply the direct numerical solution of the primative 

conservation equations of gas dynamics—namely, for one-dimensional 

flows, the conservation of mass: 

|f + £(PU) - 0 . (1) 

the conservation of momentum: 

£(p„> + £(pu2) - - iff ♦ Q) , (2) 

and the conservation of energy: 

£(pe) + £(pue)  - - (P + Q)|H . (3) 

The set of equations is closed by the equations of state: 

P =  (Y - l)pe , (4) 

and 

(C^pCAu)2 - C,pcAu ,  Au < 0 
Q - I  ° . <5) 

Au > 0 . 

The parameters involved in (1) through (5) are as follows: 

p = dens ity 

u = velocity 
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pressure 

artificial viscosity stress 

internal energy per unit mass 

ratio of specific heats 

local speed of sound 

quadratic artificial viscosity coefficient 

linear artificial viscosity coefficient. 

Note these are the inviscid equations of gas dynamics altered by 

the addition of an artificial viscosity term represented by the stress 

Q. This extra pressure-like term is added because it was necessary 

to stabilize the solution by the classical methods of Von Neumann- 

Richtmyer or Lax-Wendroff. For those methods it is typical to set 

C2 = 0.5 and C, = 1.  As will be shown in the next section, Lax- 
o 1 

Wendroff can provide solutions to linear problems with C.. = 0. Further- 

more, note that the SHASTA does not require artificial viscosity to 

stabilize the solution and hence for SHASTA calculations set C2 = C^ = 0. 

In the following section we will present solutions to some simple 

example problems by the Lax-Wendroff method and the SHASTA method.  The 

difference between the two methods is the way in which the advective 

term is handled. To illustrate the point and define the algorithms 

used, let us consider only the continuity equation (1).  If the value 

of density at time t = nAt and spatial point x. = jAx is given by 
n  .,   .,    ,   _ ^,__  _ i.J__ _*.__    ^        = (n + l)At is given p., then the value at the next time step t +^ 
3 -1-v-L.l 

by p 
n+1 Lax-Wendroff (specifically the so-called two-step Lax- 

Wendroff) is a two step process given by 

p. =    P.   - 
3 3 

n+1/2    n+1/2 n+1/2    n+1/2 
PJ j+1/2  "j+1/2 " Pj -1/2  ej-l/2 e. (6) 

where 
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n+1/2    If n  , n 
p
j+l/2 

= 2h+l + P3J 
1 r n   n    n n 
2[pj+l 

£
j+l * 

Pj E3 
(7) 

and where 

e? = u?At/Ax . (8) 
J     J 

The SHASTA algorithm is more complicated and will not be repeated 

here. The actual equations used in the calculations to be given here 

are exactly as in the paper by Boris and Book.  It should be noted that 

SHASTA is a hybrid scheme not derivable from a Taylor series expansion 

of the spatial derivatives. Hence it is not possible to give exactly 

the order of accuracy.  It is claimed, however, that SHASTA (like Lax- 

Wendroff) is second-order accurate in regions where the solution is 

smooth. SHASTA is a two step method—the first step being a transport 

step with large diffusion, which provides stability. The second step 

is an anti-diffusion step wherein most of:.the diffusion added by the 

transport step is removed. As a result the final answer is stable and 

relatively nondiffusive. 
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3.  Some Simple Examples 

In this section, the application of SHASTA and Lax-Wendroff to 

several simple examples is given. The problems solved are:  (1) a 

Mach 3 shock wave, (2) a 100 dB traveling wave, and (3) a 100 dB stand- 

ing wave. The objective of this study is to demonstrate the dynamic 

range capable of SHASTA. The Mach 3 shock wave represents a pressure 

disturbance of about ten atmospheres. The 100 dB linear waves represent 

pressure disturbances of about 2 * 10-5 atmospheres. Hence the total 

range covered in these examples is six orders of magnitude. 

Figures 1 and 2 are the results of solving the Mach 3 shock wave 

problem. The solid lines are the exact solution and the symbols are 

the numerical calculation. The solid line on the left-hand-side of 

each figure is the initial shock wave shape. The solid line on the 

right-hand-side of each figure is the exact shock wave shape at the 

time corresponding to the numerical solution. The total duration of 

the calculation is the time required for the Mach 3 wave to propagate 

the distance occupied by 100 computational cells. Comparison of the 

two methods shows that the main difference is the amount of spreading 

of the discontinuity.  Some spreading is inherent to any finite- 

difference solution but should be kept to a minimum.  The SHASTA solu- 

tion has produced a shock front occupying about 3 cells. The Lax- 

Wendroff solution, on the other hand, has the shock front occupying 

about 8 cells.  It should be noted that this difference in the amount 

of spreading of the shock front could be very important from an 

acoustics point of view because it represents a loss of high frequency 

content of the wave. 

Figures 3 and 4 are the results of solving the 100 dB traveling 

wave problem. As before, the solid line is the exact solution and 

the symbols are the numerical solution. The data shown is the pressure 
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Figure 3.  100 dB traveling wave problem as solved by SHASTA method. 
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Figure 4. 100 dB traveling wave problem as solved by Lax-Wendroff 
method with C. = 0. 
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wave form after the wave has traveled 20 wavelengths. The resolution is 

50 computational cells per wavelength. The result is that the SHASTA 

solution follows the wave very well except for a slight clipping of the 

wave peaks. This clipping phenomena has been seen in other calculations 

and seems to be characteristic of the method (see Boris and Book for 

further discussion). The Lax-Wendroff solution retains the wave shape 

and amplitude very well but has a slight phase shift. This phase shift 

should not be considered extremely important, however, since it is a 

small fraction of a wavelength after a total propagation length of 20 

wavelengths. 

Figures 5 and 6 are the results of solving the 100 dB standing wave 

problem. Again, the solid line is the exact solution and the symbols 

are the numerical calculations.  The data shown is the pressure wave 

form after the wave has oscillated 20 periods. As before, the resolution 

is 50 cells per wavelength. The result is that both SHASTA and Lax- 

Wendroff do an excellent job on this problem. Each shows only a slight 

amount of damping with the Lax-Wendroff somewhat more damped than the 

SHASTA solution.  It should be noted that all of the Lax-Wendroff 

calculations shown thus far have been with the linear artificial damping 

turned off (i.e., C. =0). It is not always possible to run in that 

mode, however. It has been observed in the past that Lax-Wendroff, and 

in fact any of the earlier methods such as the Von Neumann-Richtmyer 

Lagrangian technique, can produce high frequency ripples.  The standard 

method of controlling the ripples is to use the linear artificial visco- 

sity with C. = 1. As shown in figure 7, that procedure completely 

damps out the linear wave.  It is essential that linear artificial 

viscosity not be used if small level linear phenomena are being 

calculated. The SHASTA, of course, does not use either term of the 

artificial viscosity (i.e.,  Q = 0) and so does not suffer from the 

linear damping shown in figure 7. 
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Figure 5.  100 dB standing wave problem as solved by SHASTA method. 
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Figure 6. 100 dB standing wave problem as solved by Lax-Wendroff 
method with C. =0. 
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Figure 7.  100 dB standing wave problem as solved by Lax-Wendroff 
method with C. = 1. 
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In summary, SHASTA works fine for both large disturbance and linear 

problems of the type considered here. Lax-Wendroff also works, but not 

as well, for the large disturbance problem and for the linear problem 

provided the linear artificial viscosity is not used. 
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4. A Practical Example - Acoustic-Wave/Entropy-Wave Interaction 

Associated with Reflections from a Choked Flow Wall 

In the preceding section, we demonstrated the ability of a SHASTA 

computational acoustics code to solve several simple example problems 

for which the exact solution is known. In this section we show the 

solution to a somewhat more interesting problem with practical applica- 

tion.  The problem considered here is the reflection of an acoustic wave 

from a choked flow wall. The problem is of interest because choked 

flow walls are used as a means of isolating the fluid in the plenum 

upstream of the wall from disturbances that occur downstream. This is 

commonly done in pulsed high power lasers where the gas flowing into 

the active region is intermittently disturbed by a laser pulse and yet 

must be cleared of disturbances between pulses. 

Physically, a choked flow wall is simply a plate normal to the flow 

direction with holes for the gas to flow through. The holes are small 

enough and the pressure ratio across the wall is large enough so that 

the flow through the holes is choked. The jets exiting the holes are 

underexpanded supersonic jets that go through a mixing process downstream 

of the flow wall before they combine into a uniform flow. Figure 8 is 

a schematic of the flow downstream of a single flow wall hole.  The 

essential fluid dynamic features of the flow process are that the 

stagnation enthalpy and mass flow are fixed by the plenum conditions 

and that the temperature and density of the fluid downstream of the 

jets are set by the applied pressure.  This thermodynamic connection 

is nonisentropic so that pressure waves which reflect off the flow wall 

generate entropy waves as well as the usual reflected pressure waves. 

The entropy waves are isobaric temperature and density disturbances 

that convect with the flow. 

The results of the computational study of this process are given in 

figures 9 and 10.  Figure 9 is pressure data and figure 10 is density 
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AP/P0 = 0.01 

Figure 9a. Pressure in x-t space resulting from choked flow 
wall reflection problem. 
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Figure 9b. Same data as shown in figure 9a but from a 
different angle. 
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Figure 10a. Density in x-t space resulting from choked flow 
wall reflection problem showing entropy wave. 
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Figure 10b.  Same data as shown in figure 10a but from a 
different angle. 
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data. Each figure is a three-dimensional plot of the dependent variable 

in x-t space superimposed on an x-t diagram with the characteristics of 

the disturbances indicated. Also each figure consists of an a and b 

part, which are different only in the angular orientation of the plot. 

The initial condition is a trapezoidal pressure pulse situated down- 

stream of the flow wall and propagating upstream. The flow wall is 

located at the origin of the x-coordinate. As seen in figure 9, the 

pressure pulse propagates upstream, hits the flow wall and reflects 

downstream.  The entropy wave does not show on figure 9 because it is 

an isobaric disturbance. 

Figure 10 shows the density disturbance in x-t space. Each of the 

pressure waves identified in figure 9 has a corresponding density dis- 

turbance (the pressure waves are isentropic).  In addition, figure 10 

shows the entropy wave produced by the reflection. The entropy wave 

is convecting with the flow, which in this case is a Mach 0.5 flow. 

The reflection of pressure waves from choked flow walls can be 

treated in analytical form in the limit of small disturbances.  This 

linear analysis is given by Hogge (1978) and is in agreement with the 

results given here as it should be since the disturbance level here is 

0.01 atmospheres. 
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5.  Conclusions 

It has been shown that computational acoustics was only marginally 

possible using earlier methods because of the conflict between numerical 

stability and numerical diffusion. The SHASTA method, on the other hand, 

overcomes that difficulty and makes it possible to do both large dis- 

turbance shock wave problems and linear acoustics problems. The method 

of computational acoustics makes it possible to do many problems that 

cannot be successfully done by the linear normal mode approach such 

as nonlinear waves, problems with bulk absorption and heat transfer, 

and problems with chemical reactions and phase change. In fact, the 

method has already been used effectively in several previous research 

programs (Hogge and Crow 1977, 1978a, and 1978b). 
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